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ABSTRACT 

 
The Minimum Spanning Tree (MST) of a graph is the cheapest subset of edges that keeps the graph in one connected component. The 

significant impact of overall efficiency of a minimum spanning tree is hugely determined by the efficiency of some selected factors 

such as time taken, memory usage and number of edges visited. However, the level at which each factor affect the performance of the 

minimum spanning tree is yet to be investigated. The experimentation evaluation was performed on the MST algorithms (Borukva, 

Kruskal, Prim and Reverse-Delete) by varying the input routes of Lagos State and Federal Capital Territory Road line distances, such 

that data were generated. Seventy two data samples were obtained from the experiments. The MST algorithms studied were 

implemented using Java Programming Language.  The performance analysis of Borukva, Kruskal, Prim and Reverse-Delete spanning 

techniques were evaluated based on time taken, memory usage and number of edges visited. Statistical analysis was further performed 

on the evaluation results using Factor analysis by principal component for the analysis of the generated data. The percentages of 

variance based on time taken, memory usage and number of edges visited for Borukva were 84.90%, 14.40% and 0.65%, respectively, 

while the corresponding values for Kruskal were 82.30%, 30.80% and 10.58%, respectively. Also, the percentages of variance based 

on time taken, memory usage and number of edges visited for Prim were 86.10%, 13.10% and 0.81% respectively, while the 

corresponding values for Reverse-Delete were 58.70%, 17.50% and 0.13%. The percentage of variance forms the basis for 

establishing the level of contribution of each factor towards the performance of the MST algorithms. The study revealed that main 

factor affecting the efficiency of minimum spanning tree algorithm was time taken. 

 

Keywords: Critical factors, Decision variables, Factor Analysis, Minimum Spanning Tree algorithms, Principal 

Component Analysis (PCA) 

 

1. INTRODUCTION 

 
A spanning tree is a sub-graph of the graph that contains all the vertices. A Minimum Spanning Tree (MST) of a weighted 

graph is a spanning tree in which the sum of the weights of all its edges is minimum of all such possible spanning trees of 

the graph. There can be multiple MST of a graph, but all of these MSTs must have unique same total cost [1]. A graph is a 

collection of vertices and edges, and each edge connects a pair of vertices. MST proves important for several reasons; they 

can be computed quickly and easily, and create a sparse sub graph that reflects a lot about the original graph. They also 

provide a way to identify clusters in sets of points. Factor analysis is a branch of dimension reduction method. It seeks to 

discover if the observed variables can be interpreted in a more compressed form with few numbers of variables called 
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factors [2]. The significant impact of overall efficiency of a program is hugely determined by the approach used in the 

evaluation of factors influencing the performance of the program. Spanning is an important process that determines the 

efficiency of many computing tasks and procedures. This paper determined the level of impact that time taken to span, 

memory usage  and number of edges visited has  on the efficiency of some selected spanning tree techniques; Borukva, 

Kruskal,Prim and Reverse-Delete algorithm. 

Minimum Spanning Tree (MST) has long been of interest to mathematicians because of their many applications. Most 

commonly, cable and communications companies can represent the task of connecting every house in a network in the 

least expensive way possible as an MST problem. In this case, the cost of fixing meters between houses corresponds to the 

weights of the edges. There are analogous applications to transportation networks, such as determining the least expensive 

method of connecting a number of islands or bodies of land [3].There are various classical algorithms available such as 

Kruskal, Prim and Borukva algorithm. Kruskal, Prim and Borukva are greedy algorithms which is use to find a minimum 

spanning tree for a connected weighted undirected graph. This means that, when the total weight of all the edges is 

minimized in the tree, at that time it finds a subset of the edges which forms a tree which includes every vertex[4]. 

Another classical algorithm is Reverse – Delete. 

Borukva algorithm is an algorithm for finding a minimum spanning tree in a graph for which all edge weights are distinct. 

It was first published in 1926 by Otakar Borukva as a method of constructing an efficient electricity network for Moravia 

[5]. The algorithm was rediscovered by Choquet (1938) again by Florek, Łukasiewicz, Perkal, Steinhaus, and Zubrzycki 

in 1951; and again by Sollin  in 1965. Because Sollin was the only computer scientist in this list living in an English 

speaking country, this algorithm is frequently called Sollin algorithm, especially in the parallel computing literature. The 

algorithm begins by first examining each vertex and adding the cheapest edge from that vertex to another in the graph, 

without regard to already added edges, and continues joining these groupings in a like manner until a tree spanning all 

vertices is completed. Borukva algorithm can be shown to take O(log V) iterations of the outer loop until it terminates, 

and therefore to run in time O(E log V), where E is the number of edges, and V is the number of vertices in G.  

The Prim algorithm is also known as the DJP (Dijkstra-Jarnik Problem) algorithm, the Jarnik algorithm, or the Prim–

Jarnik algorithm. Using a simple binary Prim data structure complexity is O(|E| log |V|), where |E| is the number of edges 

and |V| is the number of vertices. Using Fibonacci Prims in dense graph complexity is O(|E| + |V| log |V|), which is 

asymptotically faster [6]. Prim‘s algorithm also looks for one edge at a time. The difference, however, is that it starts with 

a single node and intent to grow the discovered tree by adding one new vertex who is the most closest node to the tree.  

 Kruskal algorithm is a greedy algorithm in graph theory that finds a minimum spanning tree for a connected weighted 

graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all 

the edges in the tree is minimized. If the graph is not connected, then it finds a minimum spanning forest (a minimum 

spanning tree for each connected component) [7]. Kruskal algorithm is easy to understand and give good result for large 

number of vertices and edges. 

The reverse-delete algorithm is an algorithm in graph theory used to obtain a minimum spanning tree from a given 

connected, edge-weighted graph. If the graph is disconnected, this algorithm will find a minimum spanning tree for each 

disconnected part of the graph. The set of these minimum spanning trees is called a minimum spanning forest, which 

contains every vertex in the graph. 

This algorithm is a greedy algorithm, choosing the best choice given any situation. It is the reverse of Kruskal algorithm, 

which is another greedy algorithm to find a minimum spanning tree. Kruskal algorithm starts with an empty graph and 

adds edges while the Reverse-Delete algorithm starts with the original graph and deletes edges from it. Algorithm 4 

presents the algorithm for Reverse delete algorithm. The three factors (time taken, number of edges visited and memory 

usage) were considered in evaluating the four minimum spanning tree algorithms. This paper aims at determining the 

most critical of the three factors. 

 

2. LITERATURE REVIEWS 

 
Ardhendu, Jayanta and Pal [8] in their work on a new algorithm for finding MST with undirected neutrosophic graphs, 

they investigated the MST problem whose edges weights are represented by neutrosophic numbers. The main contribution 

of their study is to provide an algorithmic approach to find the minimum spanning tree in uncertain environment using 

neutrosophic numbers as arc lengths. They incorporated the concept of uncertainty in Kruskal algorithm alone without 

considering other algorithms.  
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Shivaani, Nithish and Joshua [10] in the paper titled Performance analysis of minimum spanning tree algorithm. Their 

work compares the efficiency of modern MST algorithms like Least Cost MST with the classical algorithms such as 

Prim‘s, Kruskal‘s and Borukva‘s algorithms. The research observed that for applications demanding less elapsed time, 

Borukva‘s and Kruskal‘s algorithms can be used. It was also observed that, for applications demanding less memory 

consumption, Prim‘s algorithm is the most suitable one. Their work only considered time and memory consumption 

without considering number of edges visited. 

 

3. MATERIALS AND METHOD 

 
This research investigates the level at which some selected factors affect the performance of minimum spanning tree. The 

performance of the four algorithms were tested on Lagos State and FCT Road map distance as case studies to produce 

different results for the considered factors such as time taken, memory usage and number of edges. PCA was used as a 

factor analysis technique to determine the most critical factor. The basic stages involved in the approach are; 

i. Critical factors or decision variables selected were three and determined through the extensive review of 

literatures and comprehensive survey of journals and articles. The performance of the spanning algorithm in one 

factor affects its performance in another factor. 

ii. The minimum spanning algorithms were implemented in Java programming language and the performance of 

each of the algorithms were tested on Nigeria Road map distance to generate the experimental data used for this 

research. The efficiency of the algorithms were evaluated in terms of time taken, memory usage and number of 

edges. The Java program compiled time taken in nanoseconds, memory usage in bits. 

iii. The results obtained from the implementation of the algorithms were presented to SPSS23.0 using PCA as factor 

analysis technique. 

Mathematical model approach was developed for the evaluation of the decision variables or critical factors according to 

[1] as presented in equation (1). The decision variables are declared in terms of time taken, memory usage and number of 

edges visited are interrelated to one another. Such that performance of algorithms in one factor could affect its 

performance in another 

 
 
 ∑     

 

 

                                                                                                                 

Where yi represents the i
th 

assessor‘s observation of decision variable Xk; ai,k represents the assessment of k
th
 decision 

variable by i
th
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For a sample population of minimum spanning tree algorithms, system of linear equations is obtained expresses as: 

(

 
 

  

  
 

 

  )

 
 

 (

                        

 

 

                       

)                                                                                                                                      

 

The factor analysis by principal component is adopted for the evaluation of the impact of time taken, memory usage and 

number of edges visited on the performance of the four minimum spanning tree algorithms. The following statistics were 

generated and used for the purpose of achieving the stated goal of determining the most critical factor. 

a. Descriptive statistics 

b. Correlation matrix 

c. Kaiser-Meyer Olkin (KMO) and Bartlett‘s test 

d. Communalities 

e. Rotated factor loadings 

f. Eigenvalues and percentage of variance 

g. Component matrix 

The descriptive statistics gives the mean and standard deviation of the raw score of each performance indices given by the 

sample assessors. The correlation matrix presents the degree of relationships between paired decision variables [11]. The 

barlett‘s test of sphericity is used to test the adequacy (true representation) of the sample from the population. Another 

measure of the adequacy of a sample is Kaiser-Meyer Olkin (KMO). 
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In factor analysis, there is a set of factors which is generally referred to as ―common factors‖ each of which loads on some 

performance indices and another set of factors which are extraneous to each of the performance indices [11]. The 

proportion of a variance of a performance indices explained by the common factor is called ―communality‖ of the 

performance indices. The communality of the performance index ranges between 0and 1, where 0 indicates that the 

common factors explain none of the variance and 1 indicates that all variance is explained by the common factors. 

According to [11], the component matrix presents the initial factor loading. The factor loading associated with a specific 

variable is simply the correlation between the factor and variable‘s standard scores. Each factor represents an area of 

generalization that is qualitatively distinct from that represented by any other factor. The degree of generalization found 

between each variable and each factor is referred to as ―factor loading‖. The farther a factor loading is from zero in the 

positive direction, the more one can conclude the contribution of a variable to a factor. The component matrix can be 

rotated by varimax, promax, equamax or quartimax for the purpose of evaluating high correlation between indices and 

factors. The factor score coefficient matrix can be used to evaluate the assessment of each assessor is generated. The 

eigenvalues and percentage variance of the factors extracted are generated for the purpose of evaluating the contributions 

of each factor to the efficiency of the minimum spanning tree algorithms [11, 12]. 

The generated component score coefficient matrices are used to estimate the assessment of each assessor of the impact of 

time taken, number of edges visited and memory usage on the efficiency of minimum spanning trees. 

This can be achieved by formulating a linear equation of the form: 

     ∑     

 

   

                                                                                                                                            

 Where Ci,j represents the contribution of i
th
 assessor to j

th
 factor; bk,j represents the component score coefficient of k

th
 

decision variables for j
th
 factor; Si,k represents the standard score of i

th
 assessor for k

th
 decision variable and n represents the 

number of sampled assessors. 

Si,k is estimated by: 
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Where A represents the allowable minimum raw score for decision variable; in this instance, it is I ;xi represents the raw 

score of the i
th 

decision variable; yi represents the mean of the raw scores of the i
th 

decision variable; di represents the 

standard deviation of the raw scores of i
th 

decision variable. For each sampled Assessor, the system of linear equations for 

the single extracted factor can be represented as follows: 
 

                                                                                                                                                                

In an attempt to evaluate the percentage contribution of each factor to the efficiency of the minimum spanning tree, the 

eigen value of each factor is generated. This is presented in Table 5 through Table 9. The eigen value of j
th 

factor denoted 

by ‗Ej‘ is calculated by: 

   ∑        
 

 

   

                                             

                                                                                                                                                                                  

Where Xi,j represents the number of decision variables considered in this study. Table 5 to 8 present the eigen values, 

percentage contribution and cumulative percentage contribution of the three considered factors for each of the four 

minimum spanning tree algorithm according to [10]. 

 
 

4. RESULTS AND DISCUSSION 

 
Experiments were conducted on the four aforementioned algorithms by varying the input route lines of Lagos and Federal 

Capital Territory road map distance to generate data that were used for the analysis. The performance of the algorithms 

was tested for each of the experiment by varying the input routes to produce different results for the time taken, memory 

usage and number of edges visited. The numbers of data generated were seventy-two (72) and each minimum spanning 

algorithm has records for the time taken, number of edges visited and memory usage. 
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Descriptive statistics show the mean and standard deviation of the rating of the impact of the time taken, number of edges 

visited and memory used on the efficiency of minimum spanning techniques by the experimental results generated. For 

instance, the mean and standard deviation for the mean and standard deviation for Borukva algorithm on rating of time 

taken, memory usage and number of edges were (1391214.670,2129201.780), (581261.330,184036.741) and (28.170, 

27.477), respectively as illustrated in Tables 1-4. Thereafter, the final data were subjected to factor analysis by principal 

component for statistical analysis using SPSS package. Principal component analysis was used for the extraction method 

and the rotation method by promax with Kaiser Normalization. According to the computed analysis, the analyzed results 

show that each factors show high correlation in terms of their loading on the four minimum spanning techniques. Borukva 

spanning technique for instance, the correlation Borukva algorithm has correlation between time taken and memory usage 

to be 0.948, time taken and number of edge to be 0.770. The implication is that time taken is not likely to share the same 

factor with the number of edges visited. On the other hand, number of edges visited is likely to share the same factor with 

the memory. 

The analyzed results for Borukva algorithm show that KMO value is 0.571 and Bartlett‘s test value is 0.005, the degree of 

freedom (Df) is 3, since 3 factors (time taken, memory usage and number of edge) are put into analysis. The results 

obtained from the Bartlett‘s test and KMO test are good indicators of the suitability of factor analysis. 

The communalities of the performance indices generated for the minimum spanning technique based algorithms with 

principal component analysis as the extraction method are presented in Table 5 through Table 8 for all the four minimum 

spanning algorithms. 
 

Table 1: Descriptive Statistics for Borukva Algorithm 

 Mean Std Deviation  Analysis N Missing N 

Time taken 1391214.7 2129201.8 6 0 

Memory usage 581261.33 184036.7 6 0 

Number of edges 28.17 27.5 6 0 

 

 

 

Table 2: Descriptive Statistics for Kruskal Algorithm 

 Mean Std Deviation  Analysis N Missing N 

Time taken 1391214.7 2129201 6 0 

Memory usage 527130.3 176587.2 6 0 

Number of edges 28.3 26.5 6 0 

 

Table 3: Descriptive Statistics for Prim Algorithm 

 Mean Std Deviation  Analysis N Missing N 

Time taken 1005813.0 1736108.2 6 0 

Memory usage 472218.8 142809.0 6 0 

Number of edges 25.0 21.0 6 0 

 

Table 4: Descriptive Statistics for Reverse-Delete Algorithm 

 Mean Std Deviation  Analysis N Missing N 

Time taken 1222646.0 1973969.6 6 0 

Memory usage 541167.5 172976.9 6 0 

Number of edges 28.67 28.8 6 0 

 

 
Table 5: Component Score Coefficient Matrix for Borukva 

 Component 

1 

Time taken(nanoseconds) 0.388 

Number of edges visited 0.364 

Memory used (bits) 0.331 
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Table 6: Component Score Coefficient Matrix for Kruskal 

 Component 

1 

Time taken(nanoseconds) 0.348 

Number of edges visited visited 0.518 

Memory used (bits) 0.422 

   

 
Table 7: Component Score Coefficient Matrix for Prim 

 Component 

1 

Time taken(nanoseconds) 0.384 

Number of edges visited visited 0.353 

Memory used (bits) 0.339 

 

 
    Table 8: Component Score Coefficient Matrix for Reverse-delete 

 Component 

1 

Time taken(nanoseconds) 0.395 

Number of edges visited visited 0.386 

Memory used (bits) 0.315 

 

The total variance explained determines the number of components to be extracted during analysis. The extraction is 

based on components with eigen values greater than 1. Component with eigen values greater than 1 was retained for 

further analysis. Tables 9-12 depicts total variance explained of the four algorithms. Borukva algorithms only component 

1 was extracted with eigen value of 2.548 and percentage of variance of 89.934 while component 2 and 3 were discarded. 

Likewise in Kruskal algorithm, only component 1 was extracted with eigen value of 1.760 and percentage of variance of 

58.669 while component 2 and 3 were discarded. Similarly, in Prim algorithm, only component 1 was extracted with 

eigen value of 2.584 and percentage of variance of 86.129 while component 2 and 3 were discarded. Ultimately, in 

reverse-delete algorithm, only component 1 was extracted with eigen value of 2.470 and percentage of variance of 82.327 

while component 2 and 3 were discarded. 
 

    Table 9: Eigen values generated for Borukva Algorithm 

 

 

Components 

 

       Initial Eigen values 

 

Extraction sums of Square Loading 

Total % of Var. Cumm.% Total % of Var. Cumm.% 

1 2.548 84.934 84.934 2.548 84.934 84.934 

2 0.433 14.417 99.351    

3 0.019 0.649 100.000    

 

 
Table 10:  Eigen values generated for Kruskal Algorithm 

 

 

Components 

 

       Initial Eigen values 

 

Extraction sums of Square Loading 

Total % of Var. Cumm.% Total % of Var. Cumm.% 

1 1.760 58.669 58.669 1.760 58.669 58.669 

2 0.923 30.756 89.425    

3 0.317 10.575 100.000    
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Table 11: Eigen values generated for Prims Algorithm 

 

 

Components 

 

       Initial Eigen values 

 

Extraction sums of Square Loading 

Total % of Var. Cumm.% Total % of Var. Cumm.% 

1 2.584 86.129 86.129 2.584 86.129 86.129 

2 0.392 13.056 99.187    

3 0.024 0.813 100.000    

 

 

 

Table 12: Eigen values generated for Reverse-delete Algorithm 

 

 

Components 

 

       Initial Eigen values 

 

Extraction sums of Square Loading 

Total % of Var. Cumm.% Total % of Var. Cumm.% 

1 2.470 82.327 82.327 2.470 82.327 82.327 

2 0.526 17.546 99.872    

3 0.004 0.128 100.000    

 

 

The three factors contribute a total of 100% to the efficiency of the four minimum spanning tree algorithms. From the 

results, ‗time taken‘ contributed 84.934 %, number of edges visited contributed 14.417% and memory usage contributed 

0.649 % impact on the efficiency of Borukva algorithm. This can be visualized in Figure 1. 

 
 

 
Figure1: Scree test plot of Borukva Algorithm. 
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5. CONCLUSION AND FUTURE WORKS 

 
The efficiency with which the spanning is carried out often has a significant impact on the overall efficiency of a program. 

The efficiency of  Borukva, Kruskal, Prims and Reverse - Delete spanning techniques in terms of running time, memory 

usage and number of edges was studied, experiments conducted and results subjected the factor analysis by SPSS.  

The results were subjected to factor analysis using SPSS to test the level at which each of the factor affect the spanning 

techniques. Eigenvalues were used to indicate how well each of the decision variables fits the data from the experimental 

results. From the results obtained, the main factor affecting the spanning techniques was time taken to edge. It contributed 

84.934 %, 58.669 %, 86.129 % and 82.327 % for Borukva, Kruskal, Prim and Reverse - Delete algorithm, respectively. 

The memory usage came second contributing 14.417 % for Borukva, 30.756 % for Kruskal, 13.058 % for Prim and 17.546 

% for Reverse - Delete algorithm. The number of edges visited was the least of the factors contributing negligible 

percentage for the four spanning techniques; it contributed 0.649 % for Borukva algorithm, 10.575 % for Kruskal 

algorithm, 0.813 % for Prim algorithm and 0.128 % for Reverse - Delete algorithm.  

Time taken to span is the main factor affecting spanning techniques. However, eigenvalues and the scree plot strengthen 

the fact that the running time and memory usage are the most important factors affecting the efficiency of the spanning 

techniques and Prim spanning technique is the most efficient spanning technique. Prim algorithm is the most efficient 

spanning technique among the four techniques used and the most critical factor among the three factors used was time 

taken. In future work, other techniques of factor analysis could be explored as well. Also, other programming languages 

apart from Java language should be put into consideration. 
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