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ABSTRACT

Optimizing connectivity becomes paramount as the integration of 5G networks and the Internet of Things
(IoT) continues to revolutionize communication landscapes. This systematic review digs into the intricacies of
path loss modeling, a critical aspect of ensuring robust 5G loT connectivity. By synthesizing and analyzing
diverse research studies, this review aims to provide a comprehensive understanding of the current state of
path loss modeling in the context of 5G IoT networks. We explored emerging methodologies and technologies
that contribute to the optimization of path loss modeling and ultimately paved the way for enhanced and
reliable 5G loT connectivity. The study presents a comprehensive survey of IoT connectivity in 5G networks,
specifically focusing on the different path loss models utilized in designing and installing 5G network
infrastructure. Our review contributes by examining the characteristics of 5G networks, detailing the
architecture of IoT in the 5G network, exploring diverse path loss models employed in 5G network planning,
and highlighting both current challenges and promising research areas for the future of IoT connectivity. This
research aims to provide valuable insight for researchers, practitioners, and industry professionals working on
optimizing 5G IoT networks.

Keywords: Connectivity, Path loss, 5G Networks, Internet of Things(IoT), Network Radio(NR)

1 INTRODUCTION

The revolution of wireless communication systems aims to meet the demands of users. The rate of
data utilization has exponentially increased due to the improvement in technology. The evolution of
mobile generations has progressed from the first generation (1G) to the fifth generation (5G). This
trend is driven by significant technological advancements aimed at achieving optimal connectivity
for devices (del Peral-Rosado et al., 2017; Kim et al,2019), as illustrated in Figure 1. This
connectivity is hindered by factors such as path loss, latency, and limited bandwidth. However, a
significant challenge in wireless communication is the loss of signal strength as it travels through the
channel, known as path loss. Path loss refers to the decrease in signal power over distance due to
various factors such as distance, frequency, obstacles, and environmental conditions. Path loss
models are mathematical tools used to represent this signal attenuation. Accurately understanding
and modeling path loss is essential for the design and optimization of wireless communication
systems, as it affects the coverage area, link quality, and overall network performance. By modeling
path loss, engineers can enhance various aspects of a wireless system, such as antenna placement,
transmit power control, and interference management, thereby improving the system's performance
and reliability. The 4G was proposed in the early 2000s and was the first network generation that
utilized an Internet Protocol (IP) packet-switching scheme (Agiwal et a/.,2021). About a decade after
the deployment of the 4G network and due to the dynamic nature of the environment, some
challenges such as high latency, low speed, and interference become major factors (Agiwal et
al.,2021).

Internet operators and users are eager for means to connect with data rates up to gigabytes per second
(Gbps). The emergence of the fifth generation (5G) network in the early 2020s marks a digital
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society. This network integrates a new invention called the IoT (Chettri and Bera, 2019). IoT is a
sophisticated technology that connects devices, people, platforms, software, and objects to the
Internet (Sinche ef al.,2019; Stoyanova et al.,2020). Recently CISCO industry reported that more
than 500 billion devices will be connected to the Internet by 2030. These devices will be
endogenously equipped with IoT modules that allow device-to-device(D2D) communications to each
other, forming an IoT ecosystem. The IoT is utilized in various sectors such as smart cities An et
al.,2019; Cirillo et al .,2020) smart transportation, smart agriculture, education, and healthcare
systems (Neto et al.,2018; Zhu et al.,2019).

The main features of IoT applications are long-range, low data rate, low energy consumption, and
cost-effectiveness. Low-power wide area networks (LPWAN) are deployed to meet these different
requirements for IoT facilitiecs. LPWANs work in both licensed and unlicensed frequency bands.
Many LPWAN technologies have been examined by different standards and industrial consortia,
such as LoRa, Sigfox, NB-IoT, ECGSM-IoT, Random Phase Multiple Access (RPMA), Weightless,
DASH?7 alliance, etc. 5G New Radio (NR) is the global standard for a new air interface developed to
meet the diverse requirements of the 5G mobile communication system. The 5th generation (5G) NR
system is expected to outperform LTE C-V2X, delivering superior performance in high-throughput,
low-latency, and highly reliable scenarios, particularly in congested traffic conditions and across a
variety of vehicular applications. It was specified by the 3rd Generation Partnership Project (3GPP),
an organization that develops protocols for mobile telecommunications. The key features are
enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC), and
Massive Machine-Type Communications (mMTC). These improve the connectivity of IoT devices
and enable smart cities, smart agriculture, and other IoT applications. However, the channel
connectivity is hindered by delay sensitivity caused by the effective path loss modeling approach
(Ali.,et al.,2023)

Generation of wireless
communications
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Figure 1: 5G cellular mobile Communication Requirements I'TU-R( Kim ez al.,2019)

However, the results of the studies also indicated that IoT networks in 5G have a lot of issues such as

34



LAUTECH Journal of Computing and Informatics (LAUJCI) — ISSN : 2714-4194
Volume 4. No.2, May 2024 — www.laujci.lautech.edu.ng

poor connectivity, quality of service (QoS), energy utilization, privacy, and security threats.
Communication solutions including the design, routing algorithm, protocol, and spectrum have been
proposed to solve these problems. In this study, we conduct a comprehensive survey of IloT
connectivity in 5G networks to examine different path loss models used in the design and installation
of 5G network equipment. Our main contributions to this study are as follows: Characteristics of the
5G network, the architecture of IoT in the 5G Network, different path loss models used for 5G
network planning, and challenges and attractive research areas in the future of connectivity for IoT.
This work is organized into different sections. Section one is the introduction of the study, section
two is the related works and section three is the conclusion and the direction of the future studies

2. RELATED WORKS

Examining the radio propagation models is pertinent in planning, installing, configuring, and
managing the 5G network spectrum. This facilitates reliable IoT connectivity and boasts user
confidence in the utilization of network equipment (Samad et al,2021).To achieve this, various
concepts such as the characteristics of the 5G network planning, the architecture of IoT in the 5G
Network, different path loss models used for 5G network planning, and challenges and attractive
research areas in the future of connectivity for IoT are investigated.

2.1 Characteristics and Technical Specifications of 5G Network

Massive MIMO (Multiple Input Multiple Output): Massive MIMO, an integral technology for 5G
networks, enables the simultaneous transmission and reception of multiple signals on the same radio
channel. When coupled with 5G, its performance surpasses that of Wi-Fi or 4G-LTE. Enhanced
spectral efficiency and coverage result from directing energy into smaller spatial regions through the
use of additional antennas (Dahlman et al.,2016).NOMA (Non-Orthogonal Multiple Access):
NOMA, a pivotal radio access technology in 5G, offers advantages such as low latency and
extensive high-speed connectivity. Code domain NOMA, frequently paired with mMIMO,
significantly improves spectral efficiency. Power domain NOMA exhibits versatility in its
application with MIMO, beamforming, and cooperative communications in various 5G
implementations (Lin et al.,2019).Millimeter Wave: Operating within the frequency band of 30 GHz
to 300 GHz, millimeter wave technology employs waves ranging from 1 to 10 mm. Originally
utilized in radar applications, it is now integrated with 5G to enhance spectrum bandwidth and
utilization. The pairing addresses congestion issues associated with standard technologies, offering a
more extensive and less crowded spectrum (Rappaport et al.,2013)

Machine Learning Techniques: 5G networks employ supervised and unsupervised machine learning
models to enhance overall network capacities, predict energy consumption, and optimize
technologies like beamforming. Linear Regression Algorithms predict node scheduling, while Deep
Neural Networks forecast beamforming vectors. Unsupervised learning models improve handover
selection, reduce service interruptions, and decrease latency through fog node clustering (Dangi et
al.,2021).Unmanned Aerial Vehicles (UAV): A groundbreaking proposal involves utilizing UAVs to
enhance 5G network coverage. These aerial vehicles act as beacons, potentially solving interference
problems and even replacing terrestrial cellular networks. Equipped with various sensors and
devices, UAVs in the era of 5G and IoT offer applications in precision agriculture, industrial
inspection, emergency response, disaster management, surveillance, and security. The combination
of UAVs with 5G networks and IoT sensors opens up diverse possibilities across industries,
promising improved efficiency, cost reduction, and enhanced safety (Huang ef al.,2018)

2.2 The IoT Framework in 5G Networks

The IoT for 5G structure has four important layers that are responsible for data collection,

processing, analysis, and sharing of resources between equipment and communication networks
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(Khanh et al.,2022).These layers are categorized as follows: Thing layer: This layer includes physical
systems such as actuators, objects, and sensors, and communicates with the network layer.

Network layer: The network layer is grouped into two subclasses which are low power wide area
technologies (LPWANS) such as SigFox, LoRa, ZigBee, NB-IoT, and backhaul-based connections of
5G network (Khanh et al.,2022).Middleware layer: This is the heart of the network. The IoT
framework is deployed on advanced technologies and solutions such as fog computing, edge
computing, cloud computing, Al vision, and big data analytics.

Application layer: This is the application that is used to manage the operation of systems such as
factories and smart buildings, agriculture, traffic systems, and IoT ecosystems. This layer integrates
all solutions, technologies, and applications to interact with humans through the Internet connection.
Samsung is providing IoT solutions that allow users to control home appliances.

A specific illustration of this architecture is presented in Figure 2. The sensor devices of loT
applications interact with the IoT gateway based on low-power communication networks such as
SigFox, LoRa, or NB-IoT (Khanh et al.,2022 ). These [oT gateways collect information from IoT
devices and then transmit it to the Cloud through the 5G backhaul communications. In the
middleware layer, the collected data is processed and stored, combining autonomous decision-
making as illustrated in Figure 2
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Figure 2. The IoT Framework in SG Network
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The work of Kar et al.,(2021), also examined the architecture of IoT in a 5G system that features
several critical layers, where each addressing specific functions and challenges. At the foundational
level, the Things Layer comprises smart IoT sensors deployed for various applications, which are
integral to data collection and interaction with the environment. Above this, the Network Layer
includes an IoT gateway that plays an important role in collecting and forwarding information
between IoT devices and 5G base stations through wired and wireless networks. The 5G Network
layer is for providing Ultra-Reliable Low-Latency Communications (URLLC) and Enhanced Mobile
Broadband (eMBB) capabilities.This improves 5G NR (New Radio) technology and mmWave
communication as presented in Figure 3

5G loT Applications

Cloud Storage,
Intelligence &
Analytics

5G Base Station

IoT Gateway

loT Devices

Figure 3: 5G IoT Architecture (Kar ef al.,2021)

However, several challenges remain unresolved, including network mobility, coverage, reachability,
scalability, latency, and reliability issues, which are critical areas of ongoing research and
development (Kar ef al., 2021). To address these challenges, the authors integrate channel modules to
establish effective communication. Despite these efforts, the work is limited to achieving optimal
connectivity due to the path loss approach adopted for planning and installation of network
equipment.

2.3 Comparison between 4G And 5G Networks

Kar et al. (2021) explore the transition from 4G to 5G network architectures, highlighting key
differences and their implications for path loss management in 5G IoT systems. They emphasize
significant advancements in latency reduction, with 5G aiming for as low as 1ms latency compared
to the higher latency of 4G, achieved through advanced channel modules integration. Furthermore,
they discuss the exponential increase in potential download speeds from 1Gbps in 4G to over 10
Gbps in 5G, facilitated by the integration of 5G NR technology and mmWave communication. The
authors also delve into changes in base station deployment, from macro base stations in 4G to a
dense network of small cells and macro cells in 5G, strategically placed to optimize coverage and
connectivity, which is essential for minimizing path loss effects. Moreover, they highlight the
evolution of OFDM encoding from 4G to 5G, enabling better handling of diverse applications and
scenarios and contributing to improved network performance and reduced path loss. However, the
authors did not use empirical path loss, or deterministic models for their assessment of system
performance. This system may not be suitable in large city environments.

2.4 Application of IoT in 5G Network

Vehicle Tracking and Connectivity: Streamlined IoT connectivity enables effective vehicle tracking
for logistics companies, including 3PLs and 4PLs, delivery vehicles (white goods, and food delivery
aggregators), as well as cab companies and aggregators. Connected cars benefit from seamless, low-
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latency connectivity, fostering communication with other vehicles, network infrastructure, and the
broader road infrastructure. This interconnected environment enhances overall road safety and traffic
efficiency. Telematics plays a pivotal role in collecting, storing, and transmitting essential
information for regulating moving objects, particularly vehicles. Leveraging mobile phone
capabilities, IoT sensors in vehicles monitor parameters like speed, fuel consumption, and tire
pressure. These data points enable the generation of alerts, contributing to improved safety. The
integration of IoT devices introduces additional intuitive features, elevating the overall driving
experience (Khanh et al.,2022 ).

Automation of Smart Grid: The 5G facilitates the management of the smart grid by enhanced
effectiveness compared to traditional grids. Customers benefit from high-quality services facilitated
by Advanced Metering Infrastructure (AMI) and telemetry through IoT devices. Smart grid
technology seamlessly integrates into a comprehensive system, empowering grid control,
monitoring, and analysis to ensure the safe and reliable delivery of electric power to all. This
technology enables real-time monitoring and hybrid systems, significantly increasing the likelihood
of detecting and anticipating faults promptly. The integration of intelligent electrical networks and
digital communication technology creates an advanced smart grid, facilitating quick and efficient
solutions to challenges within the power distribution system.

Remote Surveillance: The 5G network is equipped with IoT sensors that drive remote video
surveillance, allowing observation of production lines and high-security zones with ultra-HD video
quality. Video analytics is facilitated by the capabilities of 5G sensors, taking advantage of high-
speed, low-latency transmissions. Consequently, IoT sensors send real-time alerts in instances where
criminal, vandalism, or suspicious activities are identified.

Smart Traffick Staffing: 5G facilitates Intelligent Transportation by utilizing IoT sensors to collect
real-time data from vehicles and road infrastructure. Immediate alerts are generated as traffic
cabinets integrate these systems at city street intersections. Regular use of these systems can lead to
cost savings, increased system reliability, and improved traffic safety and efficiency. These
intelligent traffic control systems are equipped with IoT cameras, sensors, cellular routers, and
automation, allowing for the comprehensive deployment of 5G network (Dangi et al.,2021)

Smart Manufacturing: In the manufacturing sector, the combination of 5G and IoT presents
opportunities for process automation and predictive analytics through remote monitoring of
production lines. This integration transforms workflows into instrumented digital processes,
collecting data by seamlessly incorporating machines, operators, and sensors to achieve business
objectives. Examples of the benefits of 5G's low latency, high speed, and high-definition video
streaming capabilities in the realm of IoT include applications in repairs, Augmented Reality (AR),
Collaborative Robotics, Precision mining, and smart manufacturing scenarios such as SCADA
automation.

Healthcare System: low-latency Ultra HD video streaming and ambulances connected to hospitals
through IoT sensors facilitate real-time patient tracking, enabling hospitals to prepare for immediate
treatment. Integration of smart wearables and sensors in healthcare systems ensures continuous
contact with doctors during surgeries, allowing patients to receive prompt medical attention that
would be challenging to achieve manually. The combination of 5G network low-latency capabilities
and [oT sensors further streamlines robotic surgeries.

Smart Homes/Cities: Utilizing the 5G network and loT sensors, smart cities gather real-time data,
analyze demand patterns, and swiftly implement cost-effective solutions. Homeowners can
efficiently manage IoT sensors in appliances, lighting, thermostats, and other devices through 5G-

38



LAUTECH Journal of Computing and Informatics (LAUJCI) — ISSN : 2714-4194
Volume 4. No.2, May 2024 — www.laujci.lautech.edu.ng

connected smartphones and tablets. The ultra-low latency feature of 5G enhances the user experience

in both Smart City and Smart Homes applications, providing a close-to-real-time interaction (Ge et
al.,2019)

39



LAUTECH Journal of Computing and Informatics (LAUJCI) — ISSN : 2714-4194
Volume 4. No.2, May 2024 — www.laujci.lautech.edu.ng

2.5 Different Path Loss Models Used for 5G Network Planning

IoT in 5G is an emerging technology in the communication and information technology area. It could
be applied in a series of different domains from popular applications in life such as payment utilities,
smart retail, and managing home appliances to expert apps such as self-driving vehicles, home
monitoring, monitoring traffic status, collision warning between vehicles, and monitoring, and
controlling green energy systems, smart cities management. [oT is deployed in agriculture for forest
management, monitoring fire outbreaks, and tracking farm products. In the industrial area, actuators
and robots with the support of Al technology can perform tasks day and night and replace humans
with extremely high productivity and accuracy. It realizes the dream of smart and green factories. To
improve on the optimal utilization of these IoT various path loss models have to be investigated to
ascertain the suitable model for a particular network environment. This loss may be caused by factors
such as reflection, diffraction, refraction, and scattering components which lead to poor signal
transmission. The measurement of the spectrum aims to understand the channel behavior and to
develop realistic and trustworthy path loss models.

These radio propagation models include deterministic models, empirical models, and machine
learning approaches. Deterministic models are very complex because they require comprehensive
information about the environment, dimension, and physical parameters that constitute an obstacle in
the area. Empirical models obtained the parameter values by fitting measurement data to an
appropriate function for a particular environment. However, the development of propagation models
is important in designing a radio interface to optimize performance and deploying systems in the
field for radio coverage determination. These models play a key role in engineering tools, predicting
various values essential for the deployment of radio telecommunication systems, including site
selection, frequency allocation, power definition, and interference description. The effectiveness of
these models relies heavily on geographic datasets consisting of topography and land use types.
Ultra-high frequency (UHF) radio wave propagation is intricately linked to the obstacles encountered
in a given space, such as buildings, tree trunks, and mountainsides. Therefore, the modeling of
geographical objects becomes indispensable in any UHF wave propagation model (Faruk et al.,2019)

These models serve as a mathematical prediction of wave propagation between the origin and
destination service area. This prediction enables a system receiver to assess the adequacy of a
planned radio system in serving the desired service area. The subsequent sections delve into the
fundamental models under study, their classification, data requirements, and coverage
considerations. The empirical and semi-model parameters are further discussed as:

The Okumura—Hata model: This model is used in a roughly even surface for distances limited to
30km, with the highest transmitter antenna heights of 200m and receiver antenna heights of 10m as
depicted in Equation (1).

L, = 69.55 4+ 26.161log,,(f) — 13.8210g,o(hp) — ahy, logo(d) (1)

where f is the frequency in MHz, hb the base station antenna height in meters above the averaged
(averaged over 3—15 km) terrain height, ah,, the mobile antenna height correction factor, and d the
distance between the transmitter and the receiver in kilometers (Al-Safwani and Sheikh, 2003). This
model is limited to indoor coverage and does not consider terrain irregularities.

The COST 231 Hata model: It utilizes a wider frequency spectrum and it is suitable in urban,
suburban, and rural areas because of its simplicity and the availability of correction factors. The
model is characterized by a frequency range of 500 MHz to 2000 MHz, transmitter height of 30m to
100m, link distance of about 20 km, and mobile station (MS) height of 1 m to 10m as depicted in
Equation (2) (Mishra et al.,2019)
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L =46.3 4+ 33.9logf — 13.82loghg — a(hg) + (44.9 — 6.55loghg)logd + C )

where,C for medium cities and suburban areas, metropolitan areas, L is median path loss in
Decibels (dB), f is frequency of transmission in Megahertz (MHz), hg is base station antenna
effective height in Meters (m), d is the distance in Kilometers (km), hp is mobile station antenna
effective height in meters (m), a(hg) is the Mobile station Antenna height correction factor as
described in the Hata model for urban Areas. This model does not capture the complexity of real-
world scenarios accurately.

Walfisch—-lkegami Model: This model is used for determining the path loss in the urban area and
operates in a frequency range of 800 to 2000 MHz and within a range of 0.02 to Skm as depicted in
Equation (3) (Mollel,and Michael, 2014).

Lips = 42.6 + 26logR + 20logf 3)

Where R is the distance, and f is the frequency. The model is limited by the high cost of
implementation

Stanford University Interim (SUI) Model: This propagation model is derived from the Hata model,
operating in frequencies exceeding 1900 MHz, allowing correction parameters to extend its
applicability up to the 3.5 GHz band. In the United States, it is used in Multipoint Microwave
Distribution System (MMDS) within the frequency range of 2.5 GHz to 2.7 GHz. The SUI model
utilizes the base station antenna height ranging from 10 m to 80 m, while the receiver antenna height
spans from 2 m to 10 m. The cell radius is determined within the range of 0.1 km to 8 km. The SUI
model categorizes terrain into three types: terrain A, terrain B, and terrain C, without specifying any
particular environmental conditions as depicted in Equation (4) (Sotiroudis et al.,2013)

L =A+10ylog(£) + Xy + Xy, + S for d > d, (4)

where, Xf is correction frequency, f is the operating frequency in MHz, and h + s is the receiver
antenna height in meters and d is the distance in meters, X; is the correction for receiving antenna
height, S is the correction for shadowing in dB and y is the path loss exponent. However, this model
assumes a homogeneous environment, which may not accurately represent the diversity of real-world
terrains and urban structures.

ECC-33 or Extended Hata-Okumura model: This model is proposed for mobile systems with
omnidirectional receiver antennas sited less than 3 m above ground level and a frequency range of
about 2 GHz. It is given by Equation (5) (Mollel,and Michael, 2014).

L= Afs +Abm_Gb_GT (5)

Where, A , Apm , Gp and G, are the free space attenuation, the basic median path loss, the Base
station height gain factor, and the receiver height gain factor. ECC-33 may not functionally at
extremely high or low frequencies.

Ericsson model: This model is derived from the Okumura-Hata model designed to accommodate
adjustments in parameters based on the dynamic propagation environment and depicted in Equation(
6) (Mollel,and Michael, 2014).

L = a, + a; log(d) + a,log(h,) + aslog(h,) log(d) — 3.2log(11.75h,)% + g(f) (6)
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where parameters fare the frequency in (MHz), h;, is the transmission antenna height in (m), h,. is
the Receiver antenna height in (m). The default values of these parameters (a, , a; , a, and a3) for
different terrains. The model is designed mainly for Ericsson’s network equipment and technologies,
which limits its usability.

Free Space Model: This model computes the amount of signal loss during propagation from
transmitter to receiver. The free Space Model is determined by frequency and distance and is given
by Equation (7) Mollel,and Michael,2014).

L = 32.45 4+ 201log(f) + 20log(d) (7)

Where fare frequency and dis distance. This model is not suitable for indoor environments and does
not consider shadowing and multipath effects for its prediction.

WINNER II Model: This model is a system-level model, which describes an arbitrary number of
propagation environment realizations for single or multiple radio links for all the defined scenarios
for specific antenna configurations, with one mathematical framework by different parameter sets as
depicted in Equation (8).

PL = 20logd + B + Clogyo (L) + X (8)

where d is the distance between the transmitter and the receiver in meters (m), f is the system
frequency in (GHz), the fitting parameter A includes the path-loss exponent, parameter B is the
intercept, parameter C describes the path loss frequency dependence, and X is an optional,
environment-specific term. It is complex to implement.

ITU-R Model: The ITU-R model for indoor attenuation is a radio propagation model designed to
estimate path loss within enclosed spaces, such as rooms or closed areas delimited by various wall
configurations inside a building. Specifically designed for devices for indoor use, this model
provides an approximation of the overall path loss that an indoor communication link might
encounter as depicted in Equation (9).

PL(dB) = 20logqo f + Nlogyod + Pr(n) — 28 9)

PL (dB) is the total path loss, f (MHz) is frequency of transmission, d (m) is distance, N is distance
power loss coefficient, n is Number of floors between the transmitter and receiver and Pf (n) is floor
loss penetration factor. However, this model always assumes static antenna heights for both
transmitter and receiver which may not reflect dynamic real-world scenarios. This results in
discrepancies in predicted and actual signal transmission. However, Artificial Intelligence (Al) is a
robust tool used in addressing challenges where conventional solutions involve extensive manual
tuning or intricate rule formulations. It effectively handles complex issues that lack feasible solutions
through traditional methods (Asuquo et al.,2020)

Al is particularly valuable for adapting to dynamic environments, by learning patterns and extracting
the relationship between the variables that may eclude human observation. Al systems can
autonomously learn from historical data, identify anomalies, make predictions about future events,
and more. Utilizing Al learning capabilities, coupled with extensive datasets in areas like signal
propagation or wireless configurations, proves instrumental in tackling these complex problems. One
of the most significant challenges in communication systems is the potential loss of information
during transmission from the transmitter to the receiver. The ascent of 5G network technology is
increasingly recognized as a pivotal solution for Broadband Wireless Access (BWA). Within
frequency ranges below 11 GHz, 5G, alongside WiMAX, operates seamlessly in both line-of-sight
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(LOS) and non-line-of-sight (NLOS) scenarios. The global deployment of 5G and associated
networks, including WiMAX, is advancing at a rapid pace. Accurately estimating path loss becomes
important in the initial stages of deploying wireless networks and designing cells, especially with the
integration of the Internet of Things (IoT) in the 5G landscape. Various path loss models, such as the
Okumura Model and Hata Model, are available for predicting propagation loss. However, they
remain confined by specific parameters in the context of evolving technologies in 5G and IoT.

Optimizing service quality in wireless networks with an improved Erlang-B dynamic channel
allocation (MEB-DCA) scheme was presented in (Asuquo et al.,2020). The works did not consider
parameters that influence signal loss in the path. The study only represents the statistics of the path
loss at a given distance, but it cannot estimate the optimal received power at a specific location.
Learning-based approach for self-optimization in SON deployments and key performance indicators
(KPIs) deployed for the selection of optimal network configuration was proposed by (Bojovi¢ et
al.,206). This approach facilitates the dynamic frequency and bandwidth assignments (DFBA) in
long-term evolution (LTE) residential small cell network deployments. The RMSE used to evaluate
system performance and results show that the learning-based DFBA yields on average a performance
improvement of 33 % over approaches that are based on analytical models, reaching 95 % of the
optimal network performance while leveraging just a small number of network measurements.
However, it does not look into the specific optimization metrics used for assessing network
efficiency and resource utilization. An unsupervised-learning-based method for eNB to select relay
nodes to help broadcast was investigated in (Song et al.,2017). The eNB investigates the distribution
of vehicles and classifies them to determine a robust broadcast approach. The result emphasizes that
a larger communication range correlates with improved D2D communication capabilities among
vehicles, with a significant portion of cars achieving efficient data reception in a single time slot,
particularly at extended communication ranges. However, eNB's reliance on knowing the number of
clusters before initiating the selection method introduces a time-consuming step to find the optimal
cluster value. Big data analytics in the form of call detail records (CDR) from mobile networks to
achieve two main objectives were employed (Parwez et al,2017). The unsupervised clustering
techniques (k-means and hierarchical clustering) were used for anomaly detection in mobile wireless
networks.

The detected anomalies are compared with ground truth information to determine their accuracy,
indicating that abrupt increases in traffic demand are identified as anomalies. This information
identifies regions of interest for specific actions, such as resource allocation or fault avoidance. The
neural network-based prediction model was used to train and obtain both anomalous and anomaly-
free data. The transformation of anomalous data to anomaly-free data greatly reduces the error in
prediction during model training compared to training with anomalous data. MSE for training,
validation, and test data is significantly higher when the prediction model is applied to data with
anomalies and reduces after removing anomalies among training, validation, and test data. However,
users’ contextual information, such as mobility patterns, traffic patterns, content preferences, and
social networks was not considered. Base station prediction and proactive mobility management in
virtual cells using recurrent neural networks (RNN) (Wickramasuriya et al.,2017). A total of 70,000
sequences were selected for training and 30,000 sequences were used for testing the RNN. The result
shows that 100 training epochs were done, the testing error abruptly converged and a maximum
accuracy of 98.3% was obtained in this 8-class sequence classification problem. However, different
levels of quality of service (QoS) constraints per user were not considered by the author. Machine
Learning Aided Cognitive RAT (Radio Access Technology) Selection for 5G Heterogencous
Networks was examined in (Perez et al.,2017)
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The primary goal was to determine cognitive capabilities at the device level, allowing devices to
learn optimal decision policies based on their own experiences and achieve reasonably high-
performing decision-making processes. The results show that Q-learning, a machine learning
algorithm, outperformed alternative decision mechanisms. On average, Q-learning yielded 40%
higher rewards compared to the max-SINR (Signal-to-Interference-plus-Noise Ratio) algorithm and
approximately 15% higher rewards compared to a random decision-making mechanism. This
improved performance was directly attributed to the Q-learning algorithm's ability to enhance
network load balancing. Machine-learning methods based on a Hidden Markov Model (HMM) to
address the challenges associated with Massive Machine-Type Communication (mMTC) in
emerging 5G networks were presented in (Balapuwaduge, & Li, 2019). The HMM is employed to
enable optimal cell association for mMTC devices, allowing them to make informed decisions
regarding the most appropriate eNodeB for data transmission. Poisson and Beta arrival distributions
are applied to evaluate the performance under different MTC traffic conditions with Beta (3, 4), to
represent bursty traffic conditions. This shows that proposed cell selection approaches outperform
the random selection when MTC traffic is bursty. However, there is the problem of capturing
complex relationships among the variables. Nine different optimization algorithms, namely Gauss-
Newton (GN), gradient descent (GD), Genetic Algorithm (GA), Levenberg-Marguardt (LM), Quasi-
Newton (QN), Trust-Region-Dog-Leg (TR), pattern search (PAS), Simulated Annealing (SA), and
particle swarm (PS) were employed in (Isabona et al.,2023). The optimization algorithms were
benchmarked against measured data obtained from various radio signal propagation terrains around
four eNodeB cells. The benchmarking criteria included the Accuracy Profile Benchmark (APB),
Function Evaluation Benchmark (FEB), and Execution Speed Benchmark (ESB). The results show
that the Quasi-Newton (QN) method exhibited the least optimization error with MAPE values of
3.6319 in location 1, 2.6909 in location 2, 2.676 in location 3, and 3.6560 in location 4. This suggests
that QN provided the best prediction accuracies among the evaluated algorithms. A comprehensive
approach including data collection, statistical analysis, and optimization techniques to assess the
quality of Mobile Broadband (MBB) services in three different locations in Lagos, Nigeria in
(Imoize et al.,2023). Minimal optimization techniques using Particle Swarm Optimization (PSO)
were applied to address identified issues. Key Performance Indicators (KPIs) for MBB services were
measured, including Reference Signal Received Power (RSRP), Reference Signal Received Quality
(RSRQ), Received Signal Strength Indicator (RSSI), and Signal-to-Noise Ratio (SINR). The results
show that PSO optimization significantly reduced the RMSE for RSSI by —59.30 dBm, the PSO
optimization achieved a significant reduction in RMSE for RSRP, amounting to —58.40 dBm and the
improvement in RMSE for Reference Signal Received Quality (RSRQ) was noted as —5.24 dB.
However, the study is limited by the high cost of implementation

2.6 Network Radio (NR) for IoT Connectivity in 5G

NR for both licensed and unlicensed incorporates several essential features to support diverse
network deployment scenarios, terminal requirements, and applications over loT connectivity is
discussed and presented in (Kim et al.,2019)

2.6.1 Bandwidth Part (BWP)

BWP is a segment of the carrier bandwidth configured for a UE. Unlike LTE/LTE-Advanced, where
a UE monitors the entire 20 MHz bandwidth, NR's larger bandwidth can lead to excessive power
consumption if the same approach is used. For instance, voice calls, which need less than 100kbps,
can be efficiently handled with less than SMHz. Using the entire carrier bandwidth for such low-rate
services would unnecessarily increase power consumption due to high sampling rates. BWP allows
the UE to monitor a smaller, application-specific portion of the bandwidth, reducing power usage. A
UE can be configured with up to four BWPs per carrier, each with a configurable size and location.
Only one BWP is active at a time, but the UE can switch between them to match the required data
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rate and select the smallest BWP when idle to conserve power However, the ineffective path loss
approach will hinder optimal utilization of the service.

2.6.2 Codeblock Group (CBG)-Based Retransmission

Unique to NR, CBG-based retransmission divides a transport block (TB) into up to eight CBGs.
Each CBG can receive individual hybrid automatic repeat request acknowledgments (HARQ-ACK)
from the receiving side, indicating which CBGs were received correctly. This feature is beneficial for
delay-tolerant data transmissions that might be partially corrupted by urgent data packets. CBG-
based retransmission uses fewer time-frequency resources, improving performance by making more
room for other data.

2.6.3 Multi-Beam Operation

While multi-antenna technology in LTE-Advanced focuses on maximizing spectral efficiency, NR
uses it to ensure adequate coverage, particularly in frequency range 2 (FR2), where signal
propagation loss is significant. For example, 28 GHz signals attenuate 100 times more than 2 GHz
signals. NR employs multi-beam operation, creating multiple highly directional beams with
numerous antenna elements to mitigate this loss. Data transmission utilizes the beam with the best
signal quality at any given moment. NR specifications support measurement, selection, and
assignment to facilitate effective multi-beam operation.

2.6.4 Comparison of Network Radio Unlicensed (NR-U)and NR-Licenced (NR- L)Spectrum in 5G
Networks

The primary challenge for NR-U is meeting the regulatory requirement that a transmitter must sense
the channel before talking to ensure fair coexistence with other devices operating in the same
unlicensed spectrum. Unlike NR in licensed spectrum, critical signals and channels for
communication, such as those for synchronization, control, and random access, cannot be transmitted
on unlicensed spectrum unless it is first determined that the channel is idle. Consequently, NR-U will
emphasize specification support to create additional transmission and reception opportunities for
these essential signals and channels (Kim ef al.,2019). Another significant challenge is addressing the
problem of ineffective path loss. In unlicensed spectrum, signal propagation can be unpredictable and
inconsistent due to varying environmental factors, leading to suboptimal performance. This issue
necessitates the development of robust strategies to manage path loss effectively and ensure reliable
communication. NR-U must incorporate advanced techniques to mitigate these challenges and
maintain high-quality service.

2.7 Issues for IoT in 5G Networks Implementation

The 5G network represents a significant advancement in mobile communication technologies,
several issues spanning technological complexities, security and privacy implications, and social
considerations have emerged.

2.7.1 Technical Complications

The primary technical challenge revolves around interference, with 5G being notably sensitive to
disruptions, even from mild rain in urbanized areas. Despite efforts to mitigate these challenges
through technologies like massive MIMO and millimeter waves, scalability remains a concern. Tests
conducted in various countries using small cells highlight the necessity for more extensive
architectures to ensure comprehensive coverage and an optimal user experience (Borralho et
al.,2021)
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2.7.2 Coverage Disparities

The need for extensive and costly infrastructures poses a dilemma, as providers may prioritize urban
areas, potentially neglecting rural regions. This creates a divide in coverage and user experience,
raising ethical concerns regarding unequal access to advanced communication technologies (Pons et
al .,2023)

2.7.3 Ethical and Social Implications

The promise of improved connectivity for individuals in impoverished conditions, a key advantage
of 5@, is hindered by the current high cost of 5G architectures and their limited reach in rural areas.
While advancements are anticipated in the coming years, the present disparity poses ethical questions
about the equitable distribution of technological benefits (Pons et al .,2023).The advent of the
Internet of Vehicles (IoV) enabled by 5G introduces additional ethical and social challenges. The
proliferation of autonomous driving cars, facilitated by 5G, brings forth moral dilemmas in instances
where accidents occur due to autonomous vehicle actions. Moreover, connecting vehicles to the
internet raises security concerns, such as the potential for remote vehicle hijacking by hackers (Pons
etal .,2023)

However, the key problems in 5G implementation include technical intricacies related to
interference, the necessity for extensive and expensive infrastructures favoring urban areas, ethical
concerns regarding unequal connectivity opportunities, and security implications linked to the
connectivity of vehicles to the internet. The resolution of these issues is critical for the widespread
and equitable adoption of 5G technologies in diverse settings. However, utilizing empirical models
in network planning can cause suboptimal connectivity when these models are applied to more
complex and dynamic environments likely very densely populated areas (Robinson et al.,2010).
There is a need to examine critically various challenges that can hinder optimal connectivity of loT
devices in future work as illustrated in Table 1

Table 1: Challenges for SG Network and IoT Services.

5G Network IoT Services Issues
Security threats, including Distrib- IoT devices face security risks due Security
uted Denial of Service (DDoS) at- to weak encryption, passwords, and
tacks, identity theft, and man-in- outdated firmware.
the-middle attacks, pose vulnerabil-
ities to 5G networks.
The lower latency in 5G networks Latency in IoT services may arise Latency
can pose challenges for certain [oT from network congestion, server
applications that demand immediate  distance, and the volume of con-
responses. nected devices.
Interference from other wireless Environmental factors, like obsta- Interference
devices can disrupt data transmis- cles and interference from other
sion in 5G networks. wireless devices, harm IoT services.
The high cost of 5G infrastructure Deploying and maintaining IoT Cost
and services may pose a significant services can incur high costs, espe-
barrier for numerous IoT applica- cially when necessitating high
tions, especially those requiring bandwidth or specialized hardware.
large-scale deployment.
Planning for scalability is essential A well-designed network should be Planning

to accommodate the growing num-
ber of devices and users in both 5G
and IoT environments

capable of scaling up to meet in-
creasing demand without compro-
mising performance.
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Compatibility issues with 5G net- Compatibility issues, especially Compatibility
works may restrict the utility of with reliance on proprietary hard-

certain [oT devices in specific ap- ware or software, can constrain the

plications. functionality of IoT services.

3. CONCLUSIONS

The evolution from 1G to 5G wireless communication systems has been driven by user demands and
technological advancements. The transition from 4G to 5G marks a significant leap, primarily
characterized by the extensive utilization of the Internet of Things (IoT). While 4G effectively
addressed several key challenges, it laid the groundwork for the transformative capabilities of 5G,
which is expected to connect billions of devices by 2030, as predicted by Cisco. This interconnected
IoT ecosystem, facilitated by device-to-device (D2D) communications, spans numerous sectors.
However, despite its promises, 5G loT networks face challenges such as poor connectivity, quality of
service (QoS) issues, energy utilization concerns, and privacy and security threats. This
comprehensive survey delves into the critical role of path loss models in optimizing IoT connectivity
within the 5G landscape, highlighting the contrast between 4G and 5G in this context. 4G networks
primarily focused on improving data speeds and connectivity but were limited in supporting the
massive device density and low-latency requirements essential for IoT. In contrast, 5G networks are
designed to handle these demands more effectively, offering enhanced connectivity, reduced latency,
higher data speeds, and improved network performance. To minimize overall energy consumption,
IoT nodes in 5G leverage advanced technology scaling and low-power design methodologies. Future
IoT devices, becoming increasingly context-aware and adaptable, will demand varied power
supplies, necessitating an adaptable energy management system. High-power RF transmission for
long-distance communication in 5G requires higher supply voltages, while short-range
communication demands intermediate voltages. Additionally, sharing a power delivery network
(PDN) among modules introduces a variable load to the power management unit (PMU). Integrating
machine learning and evolutionary intelligence into path loss approaches underscores the importance
of efficient energy management. Path loss, occurring as electromagnetic signals propagate through
the environment, directly impacts the power requirements for RF transmission. By optimizing power
management strategies in response to path loss variations, IoT devices can enhance communication
reliability and extend battery life, ultimately improving overall system performance. This work
provides comprehensive insights into the technological advancements driving the enhancement of
path loss management in 5G IoT systems, aligning with the objectives of modern 5G networks. By
effectively addressing the key differences between 4G and 5G network architectures and integrating
advanced technologies to optimize network components, the concept will enhance path loss
management in 5G IoT systems. Our contributions include delineating the characteristics of 5G
networks, elucidating the architecture of IoT within the 5G framework, exploring various path loss
models for network planning, and identifying research gaps for efficient IoT connectivity. By
focusing on path loss modeling, this systematic review contributes to the goal of enhancing IoT
connections in 5G networks.

4. ACKNOWLEDGEMENTS

We are profoundly grateful to Almighty God for His knowledge and wisdom, which guided us to the
successful completion of this work.

5. REFERENCES

[1] Agiwal, M., Kwon, H., Park, H., and Jin, H. (2021). A survey on 4G-5G dual connectivity: road to 5G
implementation, IEEE Access, vol. 9, pp. 16193-16210

47



LAUTECH Journal of Computing and Informatics (LAUJCI) — ISSN : 2714-4194
Volume 4. No.2, May 2024 — www.laujci.lautech.edu.ng

[2] Ali, G. M. N., Sadat, M. N., Miah, M. S., Sharief, S. A., & Wang, Y. (2023). A Comprehensive Study and Analysis
of 3GPP’s 5G New Radio for V2X Communication.

[3] Alnatoor, M., Omari, M., & Kaddi, M. (2022). Path loss models for cellular mobile networks using artificial
intelligence technologies in different environments. Applied Sciences, 12(24), 12757.

[4] Al-Safwani, M., & Sheikh, A. U. (2003). Signal strength measurements at VHF in the eastern region of Saudi

Arabia. Arabian journal for science and Engineering, 28(2 C), 3-18.

[5] An, J., Le Gall, F., Kim, J., Yun, J., Hwang, J., Bauer, M., ... & Song, J. (2019). Toward global IoT-enabled smart
cities interworking using adaptive semantic adapter. IEEE Internet of Things Journal, 6(3), 5753-5765.

[6] Asuquo, D., Ekpenyong, M., Udoh, S., Robinson, S., & Attai, K. (2020). Optimized channel allocation in emerging

mobile cellular networks. Soft Computing, 24, 16361-16382.

[7] Balapuwaduge, I. A., & Li, F. Y. (2019, May). Hidden Markov model based machine learning for mMTC device cell
association in 5G networks. In /ICC 2019-2019 IEEE International Conference on Communications (ICC) (pp.
1-6). IEEE.

[8] Bojovi¢, B., Meshkova, E., Baldo, N., Riihijérvi, J., & Petrova, M. (2016). Machine learning-based dynamic
frequency and bandwidth allocation in self-organized LTE dense small cell deployments. EURASIP Journal on
Wireless Communications and Networking, 2016(1), 1-16.

[9] Borralho, R., Mohamed, A., Quddus, A. U., Vieira, P., & Tafazolli, R. (2021). A survey on coverage enhancement in
cellular networks: Challenges and solutions for future deployments. I[EEE Communications Surveys &
Tutorials, 23(2), 1302-1341.

[10] Chettri, L., and Bera, R. (2019). A comprehensive survey on Internet of Things (IoT) toward 5G wireless

systems. IEEE Internet of Things Journal, 7(1), 16-32.

[11] Cirillo, F., Gémez, D., Diez, L., Maestro, I. E., Gilbert, T. B. J., & Akhavan, R. (2020). Smart city IoT services
creation through large-scale collaboration. IEEE Internet of Things Journal, 7(6), 5267-5275.

[12] Dahlman, E., Parkvall, S., & Skold, J. (2016). 4G, LTE-advanced Pro and the Road to 5G. Academic Press.

[13] Dangi, R., Lalwani, P., Choudhary, G., You, 1., & Pau, G. (2021). Study and investigation on 5G technology: A
systematic review. Sensors, 22(1), 26.

[14] del Peral-Rosado, J. A., Raulefs, RLopez-Salcedo,. J. A., and Seco-Granados, G. (2017). Survey of cellular mobile
radio localization methods from 1G to 5G. IEEE Communications Surveys & Tutorials, 20(2), pp.1124-1148

[15] Faruk, N., Popoola, S. 1., Surajudeen-Bakinde, N. T., Oloyede, A. A., Abdulkarim, A., Olawoyin, L. A,, ... &
Atayero, A. A. (2019). Path loss predictions in the VHF and UHF bands within urban environments:
experimental investigation of empirical, heuristics and geospatial models. IEEE access, 7, 77293-77307.

[16] Ge, X., Zhou, R., & Li, Q. (2019). 5G NFV-based tactile Internet for mission-critical IoT services. I[EEE Internet of
Things Journal, 7(7), 6150-6163.

[17] Huang, H., & Savkin, A. V. (2018). A method for optimized deployment of unmanned aerial vehicles for maximum
coverage and minimum interference in cellular networks. IEEE Transactions on Industrial Informatics, 15(5),
2638-2647.

[18] Imoize, A. L., Udeji, F., Isabona, J., & Lee, C. C. (2023). Optimizing the Quality of Service of Mobile Broadband

Networks for a Dense Urban Environment. Future Internet, 15(5), 181.

[19] Isabona, J., Imoize, A. L., Akinwumi, O. A., Omasheye, O. R., Oghu, E., Lee, C. C., & Li, C. T. (2023). Optimal
Radio Propagation Modeling and Parametric Tuning Using Optimization Algorithms. Information, 14(11), 621.

[20] Kar, S., Mishra, P., & Wang, K. C. (2021, October). 5G-IoT architecture for next generation smart systems.

In 2021 IEEE 4th 5G World Forum (5GWF) (pp. 241-246). IEEE.
[21] Khanh, Q. V., Hoai, N. V., Manh, L. D., Le, A. N., & Jeon, G. (2022). Wireless communication technologies for [oT
in 5G: Vision, applications, and challenges. Wireless Communications and Mobile Computing, 2022, 1-12.

[22] Kim, Y., Kim, Y., Oh, J., Ji, H., Yeo, J., Choi, S., ... & Lee, J. (2019). New radio (NR) and its evolution toward 5G-

advanced. [EEE Wireless Communications, 26(3), 2-7.

[23] Lin, Z., Lin, M., Wang, J. B., De Cola, T., & Wang, J. (2019). Joint beamforming and power allocation for satellite-
terrestrial integrated networks with non-orthogonal multiple access. IEEE Journal of Selected Topics in Signal
Processing, 13(3), 657-670.

[24] Mishra, R., Kuchhal, P., & Kumar, A. (2018). Antenna Path Loss Propagation in the Dehradun Region at 1800 MHz
in L-Band. In Proceedings of the International Conference on Microelectronics, Computing & Communication
Systems: MCCS 2015 (pp. 171-179). Springer Singapore.

[25] Mollel, M., & Michael, K. (2014). Comparison of empirical propagation path loss models for mobile
communication.

[26] Neto, A. J., Zhao, Z., Rodrigues, J. J., Camboim, H. B., & Braun, T. (2018). Fog-based crime-assistance in smart iot

transportation system. /EEE access, 6, 11101-11111.

[27] Parwez, M. S., Rawat, D. B., & Garuba, M. (2017). Big data analytics for user-activity analysis and user-anomaly

detection in mobile wireless network. IEEE Transactions on Industrial Informatics, 13(4), 2058-2065.

48



LAUTECH Journal of Computing and Informatics (LAUJCI) — ISSN : 2714-4194
Volume 4. No.2, May 2024 — www.laujci.lautech.edu.ng

[28] Perez, J. S., Jayaweera, S. K., & Lane, S. (2017, June). Machine learning aided cognitive RAT selection for 5G
heterogeneous networks. In 2017 IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom) (pp. 1-5). IEEE.

[29] Pons, M., Valenzuela, E., Rodriguez, B., Nolazco-Flores, J. A., & Del-Valle-Soto, C. (2023). Utilization of 5G
Technologies in IoT Applications: Current Limitations by Interference and Network Optimization Difficulties—
A Review. Sensors, 23(8), 3876.

[30] Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., ... & Gutierrez, F. (2013). Millimeter wave

mobile communications for 5G cellular: It will work!. IEEFE access, 1, 335-349.

[31] Robinson, S., Isabona, J., & Ekpenyong, M. (2010). Macrocellular propagation prediction for wireless
communications in urban environments. Journal of Computer Science and Technology, 10(03), 130-136.

[32] Samad, M. A., Choi, D. Y., & Choi, K. (2023). Path loss measurement and modeling of 5G network in emergency
indoor stairwell at 3.7 and 28 GHz. PloS one, 18(3), ¢0282781.

[33] Sinche, S., Raposo, D., Armando, N., Rodrigues, A., Boavida, F., Pereira, V., and Silva, J. S. (2019). A survey of

IoT management protocols and frameworks. I[EEE Communications Surveys & Tutorials, 22(2), 1168-1190.

[34] Song, W., Zeng, F., Hu, J., Wang, Z., & Mao, X. (2017, June). An unsupervised-learning-based method for multi-
hop wireless broadcast relay selection in urban vehicular networks. In 2017 I[EEE 85th vehicular technology
conference (VTC Spring) (pp. 1-5). IEEE.

[35] Sotiroudis, S. P., Goudos, S. K., Gotsis, K. A., Siakavara, K., & Sahalos, J. N. (2013). Application of a composite
differential evolution algorithm in optimal neural network design for propagation path-loss prediction in mobile
communication systems. /[EEE Antennas and Wireless Propagation Letters, 12, 364-367.

[36] Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., and Markakis, E. K. (2020). A survey on the internet
of things (IoT) forensics: challenges, approaches, and open issues. [EEE Communications Surveys &
Tutorials, 22(2), 1191-1221.

[37] Wickramasuriya, D. S., Perumalla, C. A., Davaslioglu, K., & Gitlin, R. D. (2017, April). Base station prediction and
proactive mobility management in virtual cells using recurrent neural networks. In 2017 IEEE 18th Wireless and
Microwave Technology Conference (WAMICON) (pp. 1-6). IEEE.

[38] Zhu, F., Lv, Y., Chen, Y., Wang, X., Xiong, G., & Wang, F. Y. (2019). Parallel transportation systems: Toward [oT-

enabled smart urban traffic control and management. [EEE Transactions on Intelligent Transportation
Systems, 21(10), 4063-4071.

Author’s Brief Profile

Professor Imianvan Anthony Agboizebeta is a distinguished Professor of Computer Science at
the University of Benin, Nigeria. His research interests include Artificial Intelligence,
Knowledge Engineering, and Biomedical Computing. He is a recognized member of
prestigious organizations such as the Association of Computing Machinery and the Institute of
Electrical Electronics Engineering in the USA, as well as the Computer Professional
(Registration Council) of Nigeria and the Nigeria Computer Society. Professor Imianvan
completed his PhD research on the Development of Mobile Agent Systems for Assessing and
Evaluating Bandwidth in Computer Networks. He teaches courses on Web Technology, Data
Communications and Networks, Design and Analysis of Algorithms at the University of
Benin. He also serves as an External Examiner for numerous universities in Nigeria and is
involved in the Assessment and Evaluation of Academic Staff. His timely delivery of
solutions and commitment to excellence have earned him commendations from the United
Nations Organizations. He can be reached through E-mail: tonyvanni@yahoo.com or
tonyvanni@uniben.edu

Mr. Samuel A. Robinson is a lecturer in the Department of Computer Science at the
University of Uyo. He earned his Bachelor of Science degree in Computer Science from the
University of Uyo, Nigeria, in 2009, and his Master's degree in Computer Science from the
University of Benin, Nigeria, in 2016. Currently, Mr. Robinson is pursuing his Ph.D. in Data
and Wireless Communication Networks at the University of Benin. His research interests
include Data Communication Networks, Computational Intelligence Systems, and Machine
Learning. He can be reached via email at samuelrobinson@uniuyo.edu.ng or
samuel.robinson@physci.uniben.edu.

49



